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We present a multifractal analysis of digital, photoelectric images of line-of-sight magnetic fields in so-
lar active regions and quiet photosphere. We study a positive definite measure related to the Ohmic dis-
sipation of magnetic energy. After calculation of the multifractal spectrum directly and by scaling of the
moments of the measure, we focus on a multiplicative cascade approach. We infer a scale-invariant rule
by which the Ohmic dissipation measure is allocated among subsets of its support through a hierarchy of
scales. Knowledge of this rule, which is hampered to some extent by image noise, permits the calcula-
tion of the multifractal spectrum to great accuracy. The scaling of the solar dissipation field resembles
that of fully developed turbulence in an atmospheric boundary layer. The cascade multiplier probability
distribution is itself a very useful quantity. It allows a convenient display of image properties, such as
self-similarity. Further, it is more closely related than the multifractal spectrum to the physics of the
turbulent field evolution, and it thus can be used to impose stronger constraints on turbulent dynamo

models of magnetic field generation.

PACS number(s): 47.53.+n, 96.60.Hv

I. INTRODUCTION

Solar surface magnetic fields evolve in intimate connec-
tion with the turbulent motions of the photospheric plas-
ma and ought, therefore, to share some of their proper-
ties. Fully developed turbulence possesses a scale invari-
ance symmetry which is broken by spatial intermittence
[1-6], and to some extent this property also characterizes
magnetic fields in the solar photosphere [7,8]. A
mathematical language suited to distributions with both
scale invariance and intermittency is that of fractal
geometry [9].

The solar magnetic field is distributed intermittently on
its supporting set, so this scaling encompasses a spectrum
of fractal dimensions [7,8]. Line-of-sight magnetic flux
constitutes a signed measure. It has proven possible to
demonstrate self-similarity in the corresponding solar
flux distribution by means of a directly calculated mul-
tifractal spectrum, and this has led to a characterization
of the solar field distribution as a “noisy multifractal”
and has constrained acceptable dynamo models for
small-scale field generation.

In this paper we consider a positive definite measure.
The measure is associated with the Ohmic dissipation of
magnetic energy and is analogous to the distribution of
viscous dissipation often studied in connection with the
scaling of fluid turbulence. Interestingly, this measure
displays a high degree of scale invariance, while other
choices, such as the field energy distribution, do not.

Multifractal measures are typically generated by means
of a multiplicative cascade process. A measure is initially
uniformly distributed over a set. It is then divided
among subsets and then subdivided among sub-subsets,
and so on to infinity, according to an invariant allocation
rule [10,11], which may be either deterministic or proba-
bilistic. If the rule is known, and if the measure is scale
invariant, then we can calculate the multifractal spec-
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trum exactly. This spectrum includes the effects of very
large, and hence rare, intermittent fluctuations [12].

Here we hope to demonstrate the utility of the multi-
plicative cascade approach to multifractal analysis in the
study of solar magnetism. Inevitably, when we deal with
real data the degree to which the multiplicative cascade
rule actually is known and actually is sale invariant is a
matter of judgment. Image noise is an ever-present
plague. As will be apparent below, a significant portion of
our efforts has gone into attempts to estimate the degree
and kind of noise and to make corrections for it.

Our data, in the form of digital, photoelectric images
of line-of-sight solar magnetic fields, are described in Sec.
II. In Sec. IIT we survey the multifractal formalism while
reviewing some relevant aspects of past work. A measure
related to the Ohmic dissipation of magnetic field energy
is introduced. In Sec. IV the multiplicative cascade ap-
proach to multifractals is applied to the scaling of the
Ohmic dissipation measure in images of both solar active
regions and quiet Sun network magnetic fields. Some
characteristics of the observed cascade multiplier distri-
bution are interpreted in terms of image properties. In
Sec. V we employ the multiplicative cascade approach to
compare two fast dynamo models for photospheric field
generation to observations, and results are discussed and
conclusions offered in Sec. VI.

II. OBSERVATIONAL DATA

The primary data are two-dimensional, digital, pho-
tometric images of line-of-sight magnetic field. The data
are obtained with the San Fernando Observatory 28 cm,
S /20 vacuum telescope, and vacuum spectroheliograph
system operated in the video spectra-spectroheliograph
mode [13,14]. The images are derived from effective data
“cubes” representing two spatial dimensions on the Sun
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and one spectral dimension. The observed spectral range
includes the profile of the magnetically sensitive solar Fe I
line at wavelength 630.25 nm (Landé g =2.5), a telluric
O, line at 630.20 nm, and a partially blended telluric O,
line at 630.28 nm. The spectral scale of the image cubes
is 0.88 pmpixel !. The east-west spatial scale is 0.46
arcsec pixel !, corresponding to about 340 km on the
Sun. The north-south spatial scale is similar, but depends
on the spectroheliograph scanning rate. Actual spatial
resolution is limited by atmospheric turbulence (*“seeing”)
to =1 arcsec. The field of view is 470 X ~ 350 pixels, cor-
responding to ~200 arcsec or ~ 150000 km on the Sun.
The data cubes are reduced to spatial maps by opera-
tions along the spectral axis. The cubes are obtained in
both left and right circular polarizations, which are con-

verted to Stokes I and V line profiles allowing study of
both the Zeeman and Doppler effects. The line-of-sight
magnetic field in each pixel, equivalent to the line-of-sight
flux averaged over the pixel area, is calculated from the
first moment of the Stokes V profile about the line center,
divided by the equivalent width of the I profile. We esti-
mate “‘noise” in the images by the width of the weak-field
Gaussian peak in a frequency histogram of the pixel field
strengths. The 1o noise level ranges from ~5 to ~15 G.
Figure 1(a) is a line-of-sight magnetic field image includ-
ing parts of two active regions (Nos. 6850 and 6853 in the
National Oceanic and Atmospheric Administration’s So-
lar Geophysical Data Bulletin) made under good seeing
conditions with the video spectra-spectroheliograph sys-
tem on 3 October 1991 at UT 20:03:30. Approximately

FIG. 1. (a) False color, line-of-sight magnet-
ic field image of NOAA active regions 6850
and 6853 made with the San Fernando Obser-
vatory video spectra-spectroheliograph system
on 3 October 1991 at UT 20:03:30. The spatial
sale is 0.46 arcsec pixel !, corresponding to
about 340 km on the sun. Spatial resolution is
seeing limited at =1 arcsec. The field of view
is ~200 arcsec or ~ 150000 km on the sun.
White (black) represents positive (negative)
magnetic polarity. North is up, east is left. (b)
Ohmic dissipation measure derived from im-
age (a) via Eq. (3.7).
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1000 such image sets have been accumulated up to the
time of writing.

Other data examined included two very high-resolution
images made by the 50-cm Vacuum Solar Telescope and
Lockheed tunable filter instrument at the Swedish Solar
Observatory, La Palma [15]. These were made under the
best seeing conditions and demonstrate 0.5-arcsec resolu-
tion. The images are composed of 512X 512 pixels of
0.14-arcsec scale. Field of view is 85 arcsec or ~ 60000
km on the Sun.

Also studied were images from the 50-cm Swedish Vac-
uum Solar Telescope which were reconstructed by speck-
le interferometry so as to reach the instrument’s
diffraction limit of resolution at 0.22 arcsec [16]. These
images are made on a time scale shorter than that of
much of the turbulent motion of the Earth’s atmosphere.
Then the effects of atmospheric spatial inhomogeneities
are ameliorated by numerical methods. These images are
composed of 130X 104 pixels of 0.063-arcsec scale. The
field of view is thus about 8 arcsec or ~5500 km on the
Sun.

III. SCALING AND SELF-SIMILARITY
OF A MAGNETIC IMAGE

A. The box counting procedure

We consider the set of pixels in a digital image of the
solar surface which contain some measure. This might be
line-of-sight magnetic flux, a signed measure [7,17]. An
alternative, positive definite measure is the Ohmic dissi-
pation of magnetic energy. The images, illustrated in
Fig. 1, constitute a Euclidean embedding space for the
sets, with dimension d =2 and linear size, say, L XL,.
To examine image scaling, we cover the image with a uni-
form grid of boxes of side s=€V/L,L, with e<<1. The
“coarse-grained” measure y;(€) in the ith box is calculat-
ed by adding the individual measures of each pixel in the
box. If the measure is signed, the opposing components
are allowed to cancel within each box and then the abso-
lute value is taken. At each coarse-graining level (value
of €) the measure is normalized to a unit total value over
the image (this occurs naturally for a positive definite
measure). In actual calculations we employ a Monte Car-
lo method in which the lattice is randomly sampled with
boxes of a given size. This allows the accumulation of
good counting statistics, even for relatively large boxes,
and it averages over many possible partitions of the im-
age.

We are interested in statistical properties of the mea-
sure, such as self-similarity, as the box size s, or €, is
varied. For example, we can count the number N (€) of
boxes at the coarse-graining scale € which contain any
flux. If, on varying €, we find the power law N (e) xe 2
over a finite scaling range, then the invariant quantity
D =d is the fractal dimension of the set.

B. Direct calculation of the multifractal spectrum

The fractal dimension refers to the geometric distribu-
tion of the elements of a set. The concept of “multifrac-

tality” refers to a measure defined on the set; it takes into
account the differing amounts of magnetic flux or of
Ohmic dissipation contained in the pixels and hence in
the coarse-graining boxes. The measure in the ith box at
scale € is cast in power law form

ui(e):,u(a,-,e)———ea" . (3.1

Because €< 1, large values of a; correspond to small
values of u;. To characterize the distribution of the mea-
sure, for each coarse-graining scale € we make a histo-
gram of the number dN(a,e)=n(a,e)da of boxes with
“singularity strength” «a in bins of width da. If the num-
ber density n(a,€) scales according to an approximate
power law

n(a,e)=¢(lne)e_f(“’ , (3.2)

where the “multifractal spectrum” f(a) is independent of
€ in the limit €—0, then the measure is self-similar and
multifractal according to the criterion of Evertsz and
Mandelbrot [18]. When it has a positive value f(a) plays
the role of fractal dimension of the subset of boxes with
singularity strength a. f(a) is normally concave down-
ward; its maximum f (ay)=D is the fractal dimension of
the supporting set of the measure.

When applied to the line-of-sight fields, this approach
displays the presence of image noise in an easily
identifiable and even analytically treatable way [8]. This
has permitted the demonstration of self-similarity in the
solar field distributions. However, ambiguities [19] in the
function ¢(1ne) render this method inappropriate for pre-
cise calculation of the multifractal spectrum.

C. Scaling of moments of the measure

The most common approach to multifractals is
through the scaling of moments of the measure [1,4].
Starting with the measure u, we calculate the “partition
function”

Z(g,e)= S ule)=A4(q)e"? (3.3)

1

where the sum is over the boxes at the coarse-graining
level €.

If for all ¢ in the limit €é—0 the partition function
scales with exponent 7(g) independent of €, then the mea-
sure is multifractal. For real data s =€L cannot be small-
er than a single pixel, so we cannot directly take the limit
€—0. If, however, InZ (g,€) depends linearly on Ine over
some scaling range, then 7(g) may be taken to be the cor-
responding slope. This permits extrapolation below the
resolution limit. For our magnetic images we find

InZ(g.€) _ | o)+ Al | (3.4
lne Ine

The partition function can be expressed as an integral
over the singularity spectrum in Eq. (3.2):

Z(q,e)= 2,u"=fn(a,e)eq"da
= [dagle)e?® [ @Dxet® . (3.5)
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In the limit é—0 the entire contribution of the integral
comes when ga— f(a)=7 is a minimum. Thus if, and
only if, f''(a) <0, the quantities a, f(a), and g,7(q) are
connected by a Legendre transformation

_ 97(q)
dq

For a pure fractal these curves reduce to the single point
fla)=a=D. Large (small) values of ¢ correspond to
small (large) values of a.

Because of image noise this approach is essentially
unusable for the signed measure of the solar data. The
presence of a component of zero-centered Gaussian noise
in such a measure can be shown to cause 7(q) to diverge
for all ¢ < —1. Further, the noise frequently changes the
sign of f''(a) over a key range of a, rendering the Legen-
dre transformation invalid. This problem is ameliorated
when we go instead to a positive definite measure.

a , fla)=qa—r(q) . (3.6)

D. The magnetic dissipation measure

Because it is central to the nature of Kolmogorov scal-
ing, many studies of the multifractal nature of fluid tur-
bulence focus on the distribution of viscous dissipation of
the turbulent energy. Here we consider an analog for so-
lar photospheric magnetism which is related to the Ohm-
ic dissipation of field energy. This is proportional to j-j,
where the current density is calculated from the observed
fields: j<VXB. From two-dimensional, line-of-sight
magnetic images made near disk center, we have
knowledge only of B,(x,y) and will therefore use a par-
tial measure defined at the single pixel level according to

wli, j)=[B,(i +1,j)—B,(i —1,/)]?
+[B,(i,j +1)—B,(i,j —1)]*. (3.7

! |
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FIG. 2. Multifractal spectrum versus singularity strength for
the measure of Fig. 1(b). The open circles denote curves con-
structed directly from Eq. (3.2) for €=0.0025, filled circles for
€=0.04. The solid curve is calculated from moments of the
measure by Legendre transformation and the dashed curve is
calculated via the multiplicative cascade model.

0.0

Figure 1(b) is a map of this dissipation measure derived
from the image of Fig. 1(a). In the lower and middle pho-
tosphere, observed fields are thought to be contained in
thin, vertical flux tubes [20]. In this approximation, the
above measure represents the dominant part of the dissi-
pation.

Figure 2 shows the f(a) curves for the dissipation
measure u constructed directly from Eq. (3.2) for
€=0.0025 and 0.04. The left-hand sides of the curves,
corresponding to the strong concentrations of dissipation,
converge well to a single curve. The complex structure
on the right-hand side of these plots represents the effect
of image noise. The solid line in Fig. 2 is f (a) calculated
via the Legendre transformation as described above. The
dashed line is the singularity spectrum calculated by
means of a “random multiplicative model” as described
below.

IV. RANDOM MULTIPLICATIVE MODELS

A. Multiplicative processes and the multifractal spectrum

A class of cascade models produces positive definite
measures with multifractal scaling [5,10,11,21]. These
begin with a measure distributed uniformly on a set. The
measure is then allocated among given subsets according
to either a deterministic or a probabilistic rule. For ex-
ample, the measure on the unit interval might be divided
between the two halves of the interval, either according
to a fixed multiplier (say, My and 1—M,) or according to
a multiplier selected at random from a known probability
distribution P (M), where conservation of the measure re-
quires that P(M)=P(1—M). The deterministic case, of
course, corresponds to a 8-function probability density
P(M)=0.5[8(M —My)+6(M —1+M,)]. Next, the
measure contained in the subsets is divided again among
sub-subsets according to the same rule. Then the mea-
sure is again divided among sub-subsubsets, and so on to
infinity. The invariance of the allocation rule through all
the levels of subdivision produces multifractal scaling.
We can compute f(a) from the moments (M%) of
P (M), where q is a continuous parameter [6,10,11].

In an isotropic, two-dimensional version of this pro-
cedure, we begin with a square area uniformly filled with
a unit measure. The measure is divided between, say, the
left and right halves of the square according to the multi-
plier M, and (1—M,). Then the measure on the left-
hand side is divided into two equal squares according to
the multiplier M, and (1—M,) and the right-hand side is
divided into two equal squares according to M, and
(1—M3;). Thus the unit measure in the original square is
divided among the four half-size subsquares, which now
contain the measures M M, M (1—M,), (1—M )M,
and (1—M)X(1—M3;), respectively. The multipliers M,
M,, and M; ar selected at random from the same sym-
metric distribution density P(M). In the next step, each
of the four squares is further divided into four subsquares
according to the same procedure and with the same prob-
ability density. Then these subsquares are further subdi-
vided, and so on. Because P (M) is fixed at all levels of
the subdivision, the limiting measure is multifractal.
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Also as a result of this scale invariance, the moments of
the measure over the whole image can be reduced to the
moments averaged over many realizations of a single sub-
division:
1 2

(M) =4 [deMP(M)M" : @.1)
This correctly gives the normalizations (M°)=1/e*=4
and (M) =1 reflecting the conservation of the unit mea-
sure. By analogy with Eq. (3.4) we obtain the scaling ex-
ponent of the partition function by setting e=1,

_ . 2In{M9)
(r(g))=—2 aEeTY 4.2)
Now the Legendre transform gives
d 2{M“InM )
= = — 4.3
(alq)) dq(‘r(q)) M In(2) (4.3)
and
fla)=qglalq))—{(q)) . (4.4)

We have verified for an assumed probability distribution
P (M) that the singularity spectrum calculated analytical-
ly by this procedure matches that found by numerical
analysis from the corresponding generated image.

B. Multiplicative process from the data

The central element in the cascade process is the scale
invariant probability distribution P(M). We estimate
this function from our two-dimensional data as follows.
First we choose a scale of s =2n pixels. We then located
a square box of this size at random in the image in ques-
tion, divide this into four equal boxes of side n, and deter-
mine the ratio of measure in the upper two boxes to each

other, then the lower two, the left two, and the right two.
This gives four sample values of M. The choice of box is
repeated many times to build up a distribution. Then a
new scale is selected and a new distribution built up, and
so on. Symmetry of P (M) about M =0.5 is forced by the
assumed conservative nature of the cascade process. Be-
cause of the details of our image generation process, de-
scribed above, we also must check that the allocation of
measure between the left and right halves of the original
square, and between the top and bottom halves, also is
given by the same P(M). We find this to be so, within
reasonable tolerance. We have also used a two-step pro-
cess in which we first partition the original square box
into equal rectangles and then partition the rectangles
into equal squares. Each of these steps is equivalent to a
decrease of € by a factor V'2 in Eq. (4.2). At each of these
stages we obtain sample values of M by taking the ratio
of the measure in each partitioned area to that of its
parent. The P (M) encountered via this method is, within
a small margin of error, the same as that from the previ-
ous method.

Figure 3(a) shows P (M) for the dissipation measure of
Fig. 1(b) for s =4,6,8,12,16,24,32, and 48 pixels (for
s =4,n =s /2=2 pixels corresponds roughly to the reso-
lution scale). This displays a high degree of scale invari-
ance. Shown in Fig. 3(b) is the equivalent P (M) from a
second active region image obtained at the San Fernando
Observatory. These images have a pixel scale of 0.46
arcsec and resolution >1 arcsec. Figure 3(c) is derived
from a Lockheed-La Palma magnetic image of active re-
gion plage with pixel scale of 0.14 arcsec and resolution
~0.5 arcsec [15]). Figure 3(d) is derived from a speckle
interferometric reconstruction of a La Palma image of ac-
tive region plage. The pixel scale is 0.063 arcsec and the
resolution is diffraction limited at =~0.2 arcsec [16]. We

P(M)

FIG. 3. Cascade multiplier probability dis-
tribution density versus multiplier for s =4
(open circles), 6 (filled circles), 8 (open down
triangles), 12 (filled down triangles), 16 (open
squares), 24 (filled squares), 32 (open up trian-
gles), and 48 pixels (filled up triangles). (a) For
the measure of Fig. 1(b) with a pixel scale of
0.46 arcsec and a resolution =1 arcsec. (b)

From a second San Fernando Observatory ac-
tive region image. (c¢) From a Lockheed-La

P(M)

Palma magnetic image of active region plage
made on 6 June 1990 with a pixel scale of 0.14
arcsec and a resolution =0.5 arcsec. (d) From
a speckle interferometric reconstruction of a
La Palma image of active region plage. The
pixel scale is 0.063 arcsec and the resolution is
diffraction limited at =~0.2 arcsec. Here the
curves for s =24, 32, and 48 pixels are shown
only as dashed lines.
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(a)

P(M)

note that this image is only = 100 pixels on a side, so that
poor counting statistics can account for the loss of invari-
ance at the largest scales.

Figure 4 illustrates the probability P (M) for a San Fer-
nando Observatory image of quiet Sun network fields.
Figure 4(a) gives the result for an average over 24 images
made at 10-min time intervals; Fig. 4(b) gives the result
for a single image. Because the quiet Sun fields contain
relatively little magnetic flux, they may be dominated by
image noise. Furthermore, the fields themselves evolve
slowly in the quiet Sun. Thus the effect of noise may be
reduced by averaging over a sequence of images taken
close together in time. A comparison of Figs. 4(a) and
4(b) indicates that the result of reducing the noise is to
reduce the non-scale-invariant central peak of the P (M)
distribution and to broaden its base, thus producing
rough scaling. This implies that the lesser, non-scale-
invariant central peaks in the active region images, espe-
cially in Figs. 3(b) and 3(c), may be the result of image
noise. The larger the scale the more exaggerated the
effect of the noise, which lowers the wings of the curves
and produces a strong, narrow central peak. The curve
for the smallest scale s =4 pixels is only very weakly
affected by the presence or absence of noise and it is
tempting to speculate that this may represent the true
zero-noise limit, both in Figs. 3 and 4. In the following
calculations, however, we have averaged over scales. The
image averaging technique is not appropriate for active
region data. First, the image noise accounts for only a
small fraction of the total measure. Second, significant
evolution of the field structures is seen to occur within
the time span of the image sequence. The result of
averaging produces an image which, rather than scale in-
variant, is too uniform [P (M) highly peaked] at small
scales and too intermittent [P (M) very broad] at large
scales.

C. Multifractal spectra from the data

Figure 5 shows the f(a) multifractal spectra calculated
via Egs. (4.1)—(4.4) from the scale averaged probability
densities P(M) of Figs. 3 and 4. These curves are quite
similar, despite the differing physical scales of the four
images. Note that they extend at both ends to
fla)=—ow. A detail of the multifractal spectrum for
the case of Fig. 3(a) is shown as the dashed line in Fig. 2.
This is in good agreement with the spectra computed via

FIG. 4. Cascade multiplier probability dis-
tribution density versus multiplier for the dis-
sipation measure in San Fernando Observatory
images of quiet Sun network fields made on 9
September 1993 for s =4 (open circles), 6
(filled circles), 8 (open down triangles), 12
(filled down triangles), 16 (open squares), 24
(filled squares), 32 (open up triangles), and 48
pixels (filled up triangles). (a) An average over
24 images made at 10-min time intervals. (b) A
single image.

(b)

other methods on the left-hand, strong-field side of the
plot. The generator differences on the right-hand, weak-
field side can be attributed to the effect of image noise.
The form of the P(M) distributions in Figs. 3 and 4
resembles that found by a similar procedure for one-
dimensional data on a turbulent dissipation field in an at-
mospheric surface layer [11]. The corresponding f(a)
curves provide a more explicit indication of the possible
universality of our result. Concentrating on a particular
value ¢ =2 in Egs. (4.1)-(4.4), Chhabra and Sreenivasan
[22] found significant sample-to-sample fluctuations in
the values of f(q =2) and a(q =2) for ten simulations
using a binary cascade model with triangular P (M) dis-
tribution and for ten samples of fully developed tur-
bulence in an atmospheric boundary layer. Further, the
twenty values of f(2) showed a strongly linear depen-
dence on the value of a(2). Such behavior is not charac-
teristic of deterministic systems. We have calculated
f(2) and a(2) for the five solar images represented in
Figs. 3 and 4. These also show linear sample-to-sample
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FIG. 5. Multifractal spectra versus singularity strength cal-
culated from the scale averaged P (M) of Figs. 3(a), San Fernan-
do 3 October 1991 (open circles); 3(b), San Fernando 17 August
1989 (filled circles); 3(c), Lockheed 6 June 1990 (open triangles);
3(d), Speckle (filled triangles); and 4(a), San Fernando quiet Sun
9 September 1993 (open squares).
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fluctuations. In addition, when the results are converted
to an effective one-dimensional form by letting f— f /2
and a—a /2, the five points lie in the same linear band
found for the simulations and for atmospheric tur-
bulence.

D. Interpretation of probability distribution

If the image being analyzed is completely uniform,
then the measure will always be divided equally between
adjacent squares and we will have M =0.5 in every case.
Then P(M)=8(M —3). Thus a narrow distribution,
peaked about M =0.5, indicates a relatively uniform
measure. On the other hand, an intermittent measure
will have a broader P(M). If the measure contains empty
holes, then the distribution will be nonzero at M =0, 1.
From this it is apparent that the addition of noise to an
image with holes will tend to fill the holes and thus de-
crease the values of P(0)=P(1).

In the case of the P(M) in Fig. 3(a) from our image of
Fig. 1, P(M) goes to zero at some M * >0. Thus the mo-
ments in Eq. (4.1) are finite for all g. This means that
when we calculate the f(a) spectrum the whole range of
values g €[ — w0, + o« ] will be represented. If, however,
P(M)>0 for M =0, then the integrand in Eq. (4.1) will
diverge for all g less than or equal to some finite value g,.
This means that a(q)—« and f(a)— — o for ¢ =g,
and only moments g €[q,, + o ] figure in the scaling. In
the case of a uniform distribution P(M)=1, M €[0,1],
we find go=—1. If P(M) goes to zero when M —0, then
the convergence of the integral in Eq. (4.1) depends on its
functional form there, that is, on the order or strength of
th holes in the measure. If P(M)x< MP?, where p70, near
M =0, then we find qo= —1—p. If, for example, p =1,
which approximates the case observed by Chhabra and
Sreenivasan [11] for turbulence in an atmospheric bound-
ary layer, then the spectrum f (a) encompasses moments
only forg&€[—2,+ o ].

V. MULTIPLICATIVE PROCESSES
AND SMALL-SCALE DYNAMO MODELS

In previous work [8] we studied the multifractal spec-
trum of two fast dynamo models. The multiplicative cas-
cade approach allows us both to reproduce and to extend
those results.

J. K. LAWRENCE, A. C. CADAVID, AND A. A. RUZMAIKIN

A. Random cell dynamo

In the random cell dynamo model [23] a two-
dimensional lattice was partitioned into cells in which the
basic processes of field amplification and reconnection
take place in a random fashion. A nonlinear field damp-
ing mechanism is used that can be either of prompt or de-
layed type and diffusion is added via a random walk pro-
cess controlled by a parameter 0 <7 <0.25. This model
attempts to give a simple description of small-scale mag-
netic field fluctuations, such as those present in quiet Sun
areas.

We calculated the multiplier probability distribution
P (M) for the Ohmic dissipation derived from fields gen-
erated by the random cell dynamo. The results for both
the prompt and delayed damping mechanisms were simi-
lar. For the diffusion parameter value 17=~0.20 we found
good scale invariance, but this was not the case for
greater or lesser values of 7. This reproduces the result
of our earlier work [8]. The interpretation we gave for
this is that, on the one hand, a too small value of 7
represents weak diffusion so that strong field spikes can-
not spread into neighboring cells and this inhibits popula-
tion of the wings of the field probability distribution. On
the other hand, a too large value of 7 represents strong
diffusion which smooths the field and truncates the wings
of the distribution. The value 7=0.20 thus appears to
balance these effects and maximizes the intermittence of
the generated fields.

The importance of intermittence for this model is fur-
ther illuminated by the present calculation. For =0.20
we find that P (M) is essentially a uniform (flat) distribu-
tion plus sharp maxima at M =0, 1, indicating the pres-
ence of a large number of very weak field cells, which ap-
pear as holes in the measure. Figure 6(a) gives the P (M)
distribution for an image generated by the prompt damp-
ing mechanism and with =0.20. Figure 6(b) shows the
curves that result when noise is artificially added. The
noise reduces the number of holes, so the wings of the
distribution at M ~0,1 are suppressed and the curves
corresponding to progressively larger scales become pro-
gressively more peaked at M =0.5. This is the signature
behavior of Gaussian noise. Because both are dominated
by noise the cellular dynamo plus noise curves in Fig. 6(b)
appear to emulate the single-image, quiet Sun case in Fig.
4(b). However, when the noise in the data is removed by
averaging the 24 images, we see that the resemblance is
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FIG. 6. Cascade multiplier probability dis-
tribution density versus multiplier for an im-
age generated by the random cell dynamo with
prompt damping mechanism and with
= diffusivity n=0.20 for s =4 (open circles), 6
(filled circles), 8 (open down triangles), 12
(filled down triangles), 16 (open squares), 24
(filled squares), 32 (open up triangles), and 48
pixels (filled up triangles). (a) Image as gen-
erated. (b) Image with added noise.
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FIG. 7. Cascade multiplier probability dis-
tribution density versus multiplier for an im-
age generated by a chaotic ABC flow for s =4
(open circles), 6 (filled circles), 8 (open down
triangles), 12 (filled down triangles), 16 (open
squares), 24 (filled squares), 32 (open up trian-
gles), and 48 pixels (filled up triangles). (a) Im-
age as generated. (b) Image with added noise.
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only superficial; the real data curve does not resemble at
all the curve for the cellular dynamo.

B. Chaotic ABC flow

We also have studied fields produced by a conducting
fluid undergoing a prescribed, externally imposed, but
chaotic, ABC-type flow [24]. While it was constructed as
a successful demonstration of fast dynamo action, it pro-
duces a distribution of very strong fields in a background
of weak field fluctuations which can be compared to that
of solar active region fields.

Figure 7(a) gives the P (M) distribution for the original
image, kindly provided in digital form by D. Galloway.
The curves are scale invariant in the intermediate multi-
plier ranges (0.1<M <0.4 and 0.6 <M <0.9), but the
smaller scales have higher peaks at M =0.5. Just as in
the cellular dynamo case, the presence of a large number
of weak field pixels is manifested in the large peaks at
M =0,1. Figure 7(b), obtained from the generated image
with added noise, has lesser peaks at M =0,1 and
presents the Gaussian behavior of large peaks for large
scales in the center of the P (M) distribution. We observe
minor peaks at M ~0.05,0.95 for the large scales. Com-
paring these curves to those obtained from the solar data,
we observe that, even with added noise, the P (M) for the
model resembles only slightly that for the data. At the
same time, the lack of scale invariance is accentuated.

VI. DISCUSSION AND CONCLUSIONS

As Fig. 5 illustrates, the approach of random multi-
pliers allows relatively easy calculation of the multifractal
spectrum to great accuracy. This includes extension of
the curve to negative values of f (a) which represent the
effects of very large and very rare fluctuations of the mea-
sure. These would be expected to be encountered only in
correspondingly large data sets [10,11]. This accuracy,
however, hinges entirely on how accurately the multiplier
probability distribution P (M) actually is known and on
how scale invariant it actually is. For real data, this is a
matter of degree and of judgment. The P (M) curves in
Figs. 3 and 4 illustrate the extent to which this is so in
the case of solar data. If the multiplier probability distri-
butions are indeed scale invariant, it has been shown that
cascade bases other than the binary one used here will
lead to fundamentally the same results [22].

A variety of P(M) distributions can lead to very simi-
lar f(a). In principle, this probability distribution can
be used to calculate the full multifractal spectrum, but
the reverse is not true [25]. Thus the distribution P (M)
is the more fundamental quantity. It has the further ad-
vantage over the multifractal spectrum of taking only
finite values on a finite range. This in turn makes its in-
terpretation in terms of image characteristics more trans-
parent. For example, it is easy to display, if not to inter-
pret, the degree of scale invariance. The probability dis-
tribution also is more closely related to the actual physics
of the cascade process by which the observed field distri-
butions are presumed to be built up.

As a result of this, the random multiplier approach al-
lows us to tighten further the constraints imposed by the
observations on theory. From the point of view of simple
scale invariance, the random cell dynamo model with
1n=~0.20 and the chaotic ABC dynamo seem in agreement
with observations. Further, the differences in the f(a)
singularity spectra between the models and the data were
somewhat subtle. Aside from a degree of scale invari-
ance, however, P (M) from the random cell dynamo mod-
el does not resemble that form the data at all. Thus, in
our previous work [8] we had concluded that the cellular
dynamo multifractal spectrum resembled that of the
quiet Sun images. The P (M) distribution, however, pro-
vides a more stringent test that the cellular dynamo in its
present form does not pass. The same is true for the
ABC dynamo. (Its authors were not attempting to model
solar field distributions, but rather to demonstrate fast
dynamo action.)

A partial understanding of this increased stringency
may be offered by the simple fact that the multiplier
method works as well as it does for the solar fields. This
implies that, although there are spatial correlations at
many scales in the field distributions, there are no impor-
tant correlations among scales in the field formation pro-
cess. It is our hope that the approach presented here will
point the way to improved models and thus lead to an un-
derstanding of the generation mechanisms of solar sur-
face magnetism.

We draw attention again to the fact that the multiplier
probability distributions from our data resemble that
found by Chhabra and Sreenivasan [11] by a similar pro-
cedure for one-dimensional data on the dissipation field
in a turbulent atmospheric surface layer. Further, the
image-to-image fluctuations in the multifractal spectra
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that we have found appear to follow the same, rather res-
trictive, form of the sample-to-sample fluctuations
characteristic of both random multiplier simulations and
of atmospheric turbulence [22]. These similarities in-
clude images of both quiet Sun and active region fields,
made at two observatories by three different techniques,
and covering a factor of ~6 in physical scale. This im-
plies that our results may be generic and therefore of in-
terest not only to solar physicists, but also to a wider
scientific community.
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FIG. 1. (a) False color, line-of-sight magnet-
ic field image of NOAA active regions 6850
and 6853 made with the San Fernando Obser-
vatory video spectra-spectroheliograph system
on 3 October 1991 at UT 20:03:30. The spatial
sale is 0.46 arcsec pixel ', corresponding to
about 340 km on the sun. Spatial resolution is
seeing limited at =1 arcsec. The field of view
is ~200 arcsec or ~ 150000 km on the sun.
White (black) represents positive (negative)
magnetic polarity. North is up, east is left. (b)
Ohmic dissipation measure derived from im-
age (a) via Eq. (3.7).



